5533美高梅官方网站

美高梅正规网址 1
5533美高梅官方网站智能创设根基核心国标《OPC统意气风发布局》发布

美高梅正规网址:境内大家集聚东方之珠计量组织电磁包容专门的学问委员会年会

圣Jose能源所在流行长寿命高电压锌三遍电瓶研商获进展

锌电池是一类以锌金属或锌氧化物为负极活性材料的储能体系,在电池发展历程中有不可磨灭的地位。锌具有资源丰富、高安全、成本低且多电子转移机制的优点,这使其体积比容量远高于锂。虽然近20年以来锌电池发展遇到了停滞,但随着近年来绿色、环保意识的不断增强及无铅化的发展趋势,使锌电池又迎来了新一轮世界范围的关注,在低速电动车、规模储能及特种领域有极大应用前景。然而,时至今日循环寿命短仍是其应用的最大障碍,这也是当前锌电池的应用仍以一次电池为主的原因。因此,聚焦储锌化学关键科学问题,切实提升再充电效率是二次锌电池再次登上历史舞台的关键。  依托中国科学院青岛生物能源与过程研究所建设的青岛储能产业技术研究院(简称“青岛储能院”)从锌电池核心电解质开发及界面设计出发,在长寿命、高稳定锌二次电池方面取得了重要的研究成果。2016年,青岛储能院利用超高浓盐包水电解质首次实现了2.35
V的高电压锌二次电池新体系(Electrochem. Commun. 2016, 6,
69)。2017年,青岛储能院创新性地以低温修复策略进一步解决了锌负极-电解液界面浸润性的问题,为锌电池在航空航天、深海低温等恶劣条件下的应用提供了有力的技术支撑。  2018年至今,青岛储能院开发了一系列低共熔体锌基电解质体系,其溶剂化结构、物化性质、离子传输行为高度可调。重要的是,首次在锌负极表面成功构筑了原位固态电解质层(SEI),深化了多价金属界面离子界面传输层的传统认知。受到电镀行业“光亮剂”的启发,青岛储能院进而提出了酰胺聚合物的修饰策略,在传统水系电解质中从副反应抑制及均匀沉积两方面对锌负极进行精准调控,循环寿命超过
8000
h。基于前期研究进展,团队深刻分析了存在的关键问题,尤其在负极可逆性差及失效机理方面做出了诠释,并提出了液态/聚合物电解质结构设计的有益策略,为锌二次电池发展方向和应用拓展提供了建设性方案(NPG
Asia Mater. 2019, DOI:
10.1038/s41427-019-0167-1)。  上述研究获得国家自然科学基金、国家重点研发计划、两所融合基金、中科院青促会等的支持。

5533美高梅官方网站,图1 刚柔并济的固态聚合物电解质

特斯拉电动车的起火事故接连发生,国内数起均十分严重,甚至整车严重烧毁,让人们对商品锂离子电池的安全性重新审视。传统锂离子电池中的液态有机电解质是燃烧、爆炸隐患的罪魁祸首。尽管电池管理系统可一定程度上保证电池一致性和安全,但当外力碰撞造成穿刺的时候,锂离子电池起火爆炸在所难免。显然,这不是通过单纯的外部电池管理或物理外围保护所能解决的,需从理论上突破锂电池的设计理念,从而从根本上提高锂电池的安全性。

在固态电池实际应用中,挤压、穿刺等现象不可避免。如何应对随之带来的固固界面失效问题非常必要。青岛储能院巧妙利用热可逆聚合物的温度响应凝胶化过程,构筑了具有冷却恢复功能的固态电池体系。在受到强烈挤压或折叠后,电解质与电极的接触虽然被破坏,电池性能骤降,但可通过简单的低温冷却步骤重塑有效的固固界面,实现电池性能的高效恢复
,成果发表于Angew. Chem. Int. Ed. 2017, DOI:
10.1002/anie.201704373。在固态锂电池大容量器件集成和中试方面,青岛储能院已经突破高能量密度固态锂电池的技术瓶颈:成功开发出大容量固态锂电池;国家化学电源检测中心第三方检测能量密度达到300
Wh/kg,循环寿命超过500次;而且他们进一步发展聚合物受热流动会切断短路点保障安全性能,多次穿钉实验表明电池安全性极佳且具有自修复特性。

固态电解质是固态锂离子电池的核心部件,研究与开发综合性能优异的固态电解质体系是系统提升电池性能的核心和瓶颈问题。但无论无机材料还是聚合物材料,仅靠单一材料无法满足大容量电池在离子导电性、机械强度及热稳定等综合性能提升的要求。为了解决这一难题,青岛储能院提出刚柔并济固态聚合物电解质的设计理念,发挥不同材料的优势,创新地复合刚性多孔骨架材料和柔性聚合物离子传输材料。通过刚柔材料的优势互补,结合路易斯酸碱相互作用增加嵌段运动且提升界面离子传输的特点,制备出多款综合性能优异的刚柔并济固态聚合物电解质进而满足了长续航、高安全固态锂电池的苛刻要求。系列成果已经发表于ACS
Appl. Mater. Interfaces, 2017, 9, 3694;Electrochim. Acta, 2017, 225,
151;J. Mater. Chem. A, 2016, 4, 5191;Chem. Mater., 2017, 236,
221;Appl. Mater. Interfaces, 2017, 9, 8737;Adv. Sci., 2017, DOI:
10.1002/ advs.201700174;J. Mater. Chem. A, 2017, 5, 11124等学术期刊。

图2. 智能冷却恢复固态电池、高能量密度固态锂电池样品及穿钉实验

相关文章

No Comments, Be The First!
近期评论
    功能
    网站地图xml地图